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Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon - 36, Avenue Guy de Collongues, 69130 Ecully, France

Received 16 October 2007; received in revised form 18 May 2008; accepted 26 May 2008

Handling Editor: A.V. Metrikine

Available online 14 July 2008
Abstract

In this paper, we present a numerical approach to study the guided elastic wave propagation in cylindrical pipes with

local inhomogeneities. A hybrid wave finite element (WFE) and finite element (FE) technique is introduced to investigate

the dispersion and wave scattering in pipes by taking full advantage of the existing FE codes. Dynamic reduction technique

is employed to improve the computational efficiency, which is particularly suitable for the pipes with standard local

features. Numerical examples indicate that the proposed technique provides an effective way to calculate the dispersion

relationship and the scattered field. Both the axisymmetric and non-axisymmetric wave scattering problems are considered.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Much of the existing literature focuses on the study of elastic guided waves and their practical applications
in non-destructive testing (NDT) for long-range structures [1,2]. Unlike the classical ultrasound being used at
local positions, those waves are tuned to have larger coverage ability from a single probe position by using
pulse-echo method. Only a few measurements need to be performed through the remote inspection. Among
those large-scale structures, pipes are used extensively in many important engineering industries; however,
severe service conditions and environmental influence probably cause some damages and accelerate their aging
progress. Many studies [3–12] are concentrated on the rapid inspection of pipes using the long-range
evaluation technique, including the examination of interaction of the waves with defects or inclusions [3–7],
the investigation of transducer technologies for wave generation [8–10], and the studies of phased array
focusing in pipes [11,12]. The long-range inspection of pipes is essential especially when they are buried or
partially unaccessible, since it is not practical to uncover the entire pipe for the inspection.

Guided waves with wavelengths several times larger than the pipe thickness are more attractive due to the
lower attenuation [11]. As these waves travel along the pipes, they are particularly sensitive to transverse
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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6 avenue Guy de collongue, BP 163, Ecole Centrale de Lyon, 69130 Ecully Cedex, France. Tel.: +334 72 18 62 30;

8 91 44.

ess: mohamed.ichchou@ec-lyon.fr (M.N. Ichchou).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.05.039
mailto:mohamed.ichchou@ec-lyon.fr


ARTICLE IN PRESS
W.J. Zhou et al. / Journal of Sound and Vibration 319 (2009) 335–354336
defects. However, the mechanism of the interaction between those waves and the defects or typical structural
features should be investigated before conducting a rapid and effective quantitative evaluation of those pipes,
which will contribute to the choice of frequency and modes for the localization or even sizing of different kinds
of defects. Furthermore, if the excitation frequency is not well chosen, occurrence of local resonances at the
joints or branch junctions where the energy propagation might be obstructed, will make the actual inspection
distance much shorter than desired. Since the pipes can be made of anisotropic materials or multiple layers,
analytical solution is possible but difficult to obtain [13]. Problems are further complicated if these waves
interact with defects, and the geometrical features such as elbows and junctions, which are mostly irregular.
Therefore numerical methods need to be resorted to assess the feasibility of guided wave inspections, among
which the finite element (FE) method is most frequently used. Alleyne et al. [5] studied the reflection of
axisymmetric longitudinal wave from the notches in pipes and the relationship between reflection ratio and the
depths of notches. Demma et al. [6] presented a quantitative analysis for the reflection coefficient of guided
waves from notches in pipes by using the standard FE method, where the three-dimensional (3-D) problem is
considered. In fact, to deal with the problems in the view of wave propagation is more convenient than the
conventional FE method which is used to analyse the bounded structures. Generally, the pipes are uniform
in one direction so that the cross-section has the same physical and geometric properties. Such feature
allows some semi-analytical or even analytical methods to be used. In the case that the pipe is partially
inhomogeneous due to the occurrence of defects or structural features, the hybrid methods can be employed.
Zhuang et al. [14] used a hybrid semi-analytical finite element (SAFE) method to investigate scattering of
axisymmetric waves in a welded pipe containing a circumferential crack. Bai et al. [15] proposed a similar
method to study wave scattering at transverse crack in the pipe, where the 3-D problem is considered;
however, the method was developed only for the zero width planar cracks which is normal to the pipe axis.
Similar methods are also implemented for plate waves. Galán and Abascal [16] used a hybrid SAFE/boundary
element (BE) method to study Lamb wave scattering in semi-infinite plates. Zhao and Rose [17] used a hybrid
analytical/BE method to investigate the scattering of both Lamb and horizontal shear (SH) waves in plates
with surface break defects, where the normal modes come from the analytical solution.

In the present paper another numerical eigenmode extraction method is employed, which is based on the
technique dealing with the wave propagation problems of periodic structures. Mead [18] proposed a general
theory in order to determine harmonic wave propagation characters, where both one-dimensional (1-D) and
two-dimensional (2-D) periodic systems are considered. Recently, more studies focus on extending this idea
to homogenous structures rather than generally periodic systems comprised of an arbitrary substructure.
This wave FE method regards the homogenous waveguide structure as a periodic system assembled by
identical substructures [19]. Those substructures can be discretized with the aid of some commercial FE
procedures, rather than the development of a relatively new FE code for specific elements. This allows the
existing element libraries and powerful grid generation procedures to be used for many engineering structures.
As the system matrices (usually available through the substructure or superelement analysis [20,21]) of a
typical substructure is at hand before the eigenfunction need to be formed, the eigenfunction formulation is
very different from that using SAFE method, though both methods lead to the quadratic eigenvalue problems
with the same matrix size, if the equal number of nodes are used in the cross-section normal to the wave
propagating axis. Houillon et al. [22] studied the wave propagation of homogenous thin-walled structures
using this method. Duhamel et al. [23] used this method to investigate the vibrations of uniform waveguide
structures, where it is proved to be accurate with relatively low computational cost in comparison with the
standard FE method. Ichchou et al. [24] investigated the numerical sensitivity of this method. The method was
also implemented for wave propagation and dynamic problems in the homogeneous structures with internal
fluid [25–27], where the studies were based on the wave finite element (WFE) method for the 1-D wave
propagation problem and concentrated on the lower frequency problems (far below the frequency of interest
for NDT).

So far as the authors know, no previous studies have been published to extend this method to investigate the
interaction of the elastic waves with the local inhomogeneities in the pipes, especially the higher frequency
wave scattering problems which mostly concern relatively large FE models. In this work, we propose a hybrid
WFE/FE method for the scattered field calculation, which is computationally expensive by using the full FE
method if the frequency goes higher [6].
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By using axisymmetric elements, WFE method for the 1-D wave propagation problem is employed to
extract the wavenumbers and mode shapes for axisymmetric modes (longitudinal modes—L(0, m) and
torsional modes—T(0, m), see the definition of the wave modes in Ref. [13] or Ref. [28]). Those eigenmodes are
then superposed to form a scattering equation by connecting with FE formulation of the pipe segment with
inhomogeneities.

In order to include more general local inhomogeneities than those considered by the aforementioned works,
the dynamic reduction technique, component modal synthesis (CMS) is combined to formulate a numerically
efficient scattering equation when dealing with the complex substructure models. This reduction technique
fully takes into account the fact that the pipelines usually have some standard local features, and also allows
various types of 3-D defects to be considered with ease.

As to the non-axisymmetric modes (flexural modes—F(n, m)), before connecting those eigenmodes to the
dynamic reduced FE formulation, they are calculated by using the 3-D brick elements, which is based on the
WFE formulation for the 2-D wave propagation problem [29]. Only the radial dimension is discretized.
Consequently this treatment avoids the large-scale non-symmetric eigenvalue problems to be encountered
during the frequently used 1-D wave propagation formulation for the whole pipe circle.

Numerical examples are given to illustrate the applicability of the presented formulation, with the results
compared with standard FE results and some published experimental data. The proposed hybrid WFE/FE
formulation is aimed at offering a convenient numerical scheme for the elastic wave scattering in the pipes with
local defects and structural features, which principally involving the sensitivity analysis of specific elastic waves
and the feasibility for their application of NDT in pipes.

2. Finite element analysis of axisymmetric waves

Since wave propagation properties in pipes are complex, it is necessary to study the axisymmetric mode
properties with lower computational expense before treating with the 3-D problems. The axisymmetric guided
waves in the hollow cylinders are similar to Lamb waves and SH waves in the plates. It is well known that their
mode shapes converge as the radius to thickness ratio increases. They are a set of important waves including
mostly popularly used L(0, 2) and T(0, 1) modes for pipe inspection [3–15].

2.1. Finite element description and dispersion relationship

For the 1-D wave propagation in the pipe, as is shown in Fig. 1, by utilizing the axisymmetric elements, the
general FE formulation of a typical cell can be written as

Dll Dli Dlr

Dil Dii Dir

Drl Dri Drr

2
64

3
75

ql
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qr
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where [D] is the structured dynamic stiffness matrix, subscripts l, r and i denote the left, right and interior
components, respectively. Assume that there exists no interior force (Fi ¼ 0); Eq. (1) can be simplified by
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Fig. 1. Structure discretized to identical cells (one-dimensional periodic system).
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eliminating the components of interior degree of freedoms (dofs) as

Sll Slr

Srl Srr

" #
ql

qr

( )
¼

Fl

Fr

( )
, (2)

where

Sll ¼ Dll �DliD
�1
ii Dil ; Slr ¼ Dlr �DliD

�1
ii Dir,

Srl ¼ Drl �DriD
�1
ii Dil ; Srr ¼ Dri �DriD

�1
ii Dir.

Therefore only the interface dofs are retained. Provided that there is no wave distortion induced by the
material or geometric variation in the propagation direction, namely z-axis, the wave motions can be
theoretically treated using the exponential function e�ikzði ¼

ffiffiffiffiffiffiffi
�1
p
Þ. Hence the displacement and force

relationships between two adjacent cells are (see Fig. 1)

q0l ¼ ql e
�ikd ; F0l ¼ Fl e

�ikd , (3)

where d is the length of the cell in wave propagation direction. The time-dependent term eiot is omitted here,
and elsewhere for other expressions. Considering the displacement continuity q0l ¼ qr and force equilibrium
condition F0l ¼ �Fr, Eq. (2) can be written as

Sll Slr

Srl Srr

" #
ql

lql

( )
¼

Fl

�lFl

( )
, (4)

where l ¼ e�ikd denotes the propagation constant. Eliminating the force component of Eq. (4) leads to a
special case of quadratic eigenvalue problem for (l, ql)

½Srl þ lðSll þ SrrÞ þ l2ST
rl �ql ¼ 0, (5)

where Srl, Sll and Srr 2 CN�N , Sll+Srr ¼ (Sll+Srr)
T. The eigenvalues of above eigenfunction Eq. (5) come in

pairs (l, 1/l), and if ql is the right eigenvector of l then ql
T is the left eigenvector of 1/l, which can be proved by

taking the transpose of Eq. (5):

qTl ½Srl þ 1=lðSll þ SrrÞ þ 1=l2ST
rl � ¼ 0. (6)

If the spectrum problem for both propagating and evanescent modes is of interest, the unknown
propagation constant must be obtained for a given frequency in order to find the dispersion relationship.
Reformulating Eq. (5) leads to

0 Srl

�Srl �Sll � Srr

" #
ql

lql

( )
¼ l

Srl 0

0 ST
rl

" #
ql

lql

( )
. (7)

The solution of such standard generalized eigenvalue problem yields the displacement vectors ql
j (j ¼ 1,

2,y, 2N) for propagating and non-propagating waves. The corresponding force vectors can be written as

F
j
l ¼ ðSll þ ljSlrÞq

j
l (8)

which can be obtained from Eq. (4). However, the symmetry of the spectrum in Eq. (7) might be lost due to
roundoff errors, if no preservation routine is used in the eigenvalue computation. In the case of large matrices
produced, it is better to employ the structured linearization method proposed by Zhong and Williams [30],
which calculates the reciprocal pairs (l, 1/l) by constructing Eq. (5) to the eigenproblem about two skew
symmetric matrices

Srl � ST
rl �ðSrr þ SllÞ

ðSrr þ SllÞ Srl � ST
rl

" #
ql

lql

( )
¼ m

0 Srl

�ST
rl 0

" #
ql

lql

( )
, (9)

where m ¼ (1/l+l). The pairing of eigenvalues is automatically guaranteed, as the linearization itself preserves
the symmetry. However, eigensolution of Eq. (9) need specific iteration procedure to be developed [30], so
does the linearization method proposed in Ref. [31]. As the left system matrix is most likely well-conditioned,
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Eq. (9) can be formulated as the standard eigenvalue problem:

½SStd�
ql

lql

( )
¼

1

m

ql

lql

( )
, (10)

where [SStd] equals to the left division of the right system matrix by the left one. The eigenvalues 1/m with the
larger real parts correspond to the wavenumbers with the smaller amplitudes of imaginary parts, although not
very strictly. This allows the ARPACK routine for non-symmetric complex eigenvalue problems to be used
[32], which is faster than the QZ algorithm if only a few eigenpairs are of interest.

If the dispersion relation is available, the time-averaged axial energy flow in the pipe wall is I ¼ 1
T

R T

0 FH _q dt,
which written in Poynting vector is [18]

I j ¼ Ph i ¼ 1
2
RefioðFj

lÞ
Hq

j
lg, (11)

where superscript H denotes Hermitian transpose.
The group velocity of a modulated wave is Vg ¼ qo/qkR, where kR is the real part of the wavenumber. It

equals to the energy velocity (or signal velocity) for the waves in undamped or slightly damped media. As to
the waves in the highly absorptive media, it is well known that the group velocity cannot describe the manner
that signal travels. The energy velocity is defined as the quotient of the time average energy flow and the
energy density at the cross-section normal to the propagating axis [24],

V e ¼
Ph i

Eh i
, (12)

where E ¼ T+U, which stands for the sum of potential and kinetic energy density at the cross-section.
Considering that the typical cell with length d, expression Eq. (12) for energy velocity can be defined at the mid
cross-section, where

Pmidh i ¼
1

2
ekI dRefioFH

l qlg, (13)

where kI is the imaginary part of the wavenumber. The average kinetic and potential energy density at the mid
cross-section is approximated as

Th i ¼
1

4d
o2qHlrMqlr; Uh i ¼

1

4d
qHlr Kqlr, (14)

where qlr ¼ ðq
T
l ; q

T
r Þ

T, M and K are the mass and stiffness matrices condensed on the left and right boundaries.
Thus, expression Eq. (12) for energy velocity becomes

V e ¼
2d ekI dRefioFH

l qlg

qHlr ðKþ o2MÞqlr

. (15)

It should be mentioned that if the dispersion relationships in undamped systems are of interest, Eq. (5) can
be re-formed to the generalized eigenvalue problem for o2 about two Hermitian matrices, which provides a
rapid dispersion calculation scheme.

2.2. Scattering equation and its dynamic reduction form

Consider an infinitely long pipe with the local inhomogeneities which are due to the geometry or material
variation. A monochromatic incident wave, which comprises a single or multiple wave modes, is assumed to be
generated at z�N and travel in the positive z+N direction. Scattering phenomenon emerges when the
incident wave impinges on those inhomogeneities, as is shown in Fig. 2 schematically. The resultant wave field
consists of the incident and scattered components (both reflection and transmission).

2.2.1. Mode expansion and scattering equation formula

To describe the scattered field, eigensolution need to be decomposed to positive- and negative-going wave
modes for the computational purpose. If the hysteretic damping is introduced by complex stiffness,
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eigensolution of Eq. (7) or Eq. (9) will not yield the real or purely imaginary wavenumbers. Then the eigen
modes (qj, Fj), where j ¼ 1, 2,y,2N, can be divided into two sets with the same number: ([q�], [F�]) with jljo1
representing negative-going waves, ([q+], [F+]) with jlj41 representing positive-going waves, which are
written as N by N base matrices. For the undamped system, there exists the case jlj ¼ 1 relating to the purely
propagating waves, which can also be decomposed to positive-going and negative-going waves by observing
the sign of the imaginary part of l.

As the mode bases are split, the incident, reflected and transmission waves can be expanded as the
superposition of the whole mode bases. In fact, not all the bases should be taken into account, although they
are generally linear independent. This is mainly due to the fact that the higher order evanescent modes only
occur at the immediate vicinity of the inhomogeneities, since the non-reflecting boundaries are considered in
this study. In addition, the FE discretization with limited number of elements cannot predict those eigenmodes
and the corresponding field vectors within acceptable precision. Furthermore, the base reduction allows some
available procedures been used [32], and also makes the scattered field calculation computationally cost
effective.

By using the reduced bases with base number Nr (NroN), the incident, reflected and transmission waves can
be expressed as

qinc ¼ ½qþ�KþAinc; qref ¼ ½q��K�Aref ; qtra ¼ ½qþ�KþAtra, (16)

where qinc and qtra are formed of the same bases, [q+] and [q�] are normalized N by Nr matrices, Ainc, Aref, and
Atra denote the amplitudes of the corresponding waves, K+ and K� are diagonal matrices relating respectively
to the positive- and negative-going waves, which are given as

K� ¼ diagfe�ikjzg; ðj ¼ 1; 2; . . . ;NrÞ. (17)

Since the relationship between displacement vectors and force vectors Eq. (8) holds, the expressions of Finc,
Fref and Ftra are analogous:

Finc ¼ ½Fþ�KþAinc; Fref ¼ ½F��K�Aref ; Ftra ¼ ½Fþ�KþAtra, (18)

where

½F�� ¼ Sll ½q
�� þ Slr½q

��diagfe�ikjdg. (19)

When those waves are connected with the inhomogeneous part, the interface can be established adjacent to
the excitation resource or the discontinuities in order to satisfy the coupling conditions. As the truncated
modal bases are used, they may not be sufficient to satisfy a ‘‘continuous’’ but probably arbitrary stress
function, if the interface is set to be very close to the inhomogeneities. Consequently, the coupling structure
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model sometimes need to cover a part of waveguide structures to avoid the high order evanescent waves being
predicted at the interface, as is shown in Fig. 2. The extension size depends on the frequency of interest and the
irregularities of the coupling structures in contrast to the waveguide features. Thus the truncated bases, which
consist of all the propagating modes and a set of evanescent modes, will allow the displacement and stress field
to be represented by an expansion over those modes.

The modelling of damaged cell is similar to that of typical one for modes extraction, except that additional
interior dofs might be included. The coupling condition is governed by the dynamics equation of coupling
structures,

½Mc� ð€q
c
l Þ
T
ð€qc

i Þ
T
ð€qc

rÞ
T

n oT

þ ½Kc� ðq
c
l Þ
T
ðqc

i Þ
T
ðqc

rÞ
T

n oT

¼ ðFc
l Þ
T 0 ðFc

rÞ
T

n oT

, (20)

where [Mc] and [Kc] denote the mass and stiffness matrices of coupling structures, respectively. Eq. (20) can be
condensed as

Sc
ll Sc

lr

Sc
rl Sc

rr

" #
qc

l

qc
r

( )
¼

Fc
l

Fc
r

( )
. (21)

Considering the coupling conditions

qc
l ¼ ½q

þ�Ainc
þ ½q��Aref ; qc

r ¼ ½q
þ�Atra (22)

and

Fc
l ¼ ½F

þ�Ainc
þ ½F��Aref ; Fc

r ¼ �½F
þ�Atra. (23)

Eq. (21) can be re-formed as the governing equations for the scattering problem:

Sc
ll ½q
�� � ½F�� Sc

lr½q
þ�

Sc
rl ½q
�� Sc

rr½q
þ� þ ½Fþ�

" #
Aref

Atra

( )
¼
½Fþ� � Sc

ll ½q
þ�

�Sc
rl ½q
þ�

" #
fAinc
g. (24)

Given a single or a set of incident modes as the input in Eq. (24), scattered modes (reflection and
transmission) acting as the output can be obtained. Numerically, the base number Nr is suggested to be
frequency dependent, which can be implemented by a routine to include those slightly evanescent wave modes
into the bases.

2.2.2. Dynamic reduction for coupling structure modelling

Local defects or complex structural features most likely induce a coupling structure model with large dofs
since higher grid density is required. The FE grid might be locally refined in order to well characterize the
models. On the other hand, higher order evanescent modes play an important role when the scattering arises
from a severe discontinuity. They are more likely excited as the frequency goes higher. Whereas the modes
extraction procedure will be time-consuming if those modes need to be predicted precisely, the further
enlarged coupling structure is required to avoid their emergence at the interface. The computational burden is
then suggested to switch to the modelling of the coupling structures. However, the system matrices of coupling
parts at each frequency in Eq. (21) have to be taken into calculation. In this case, a convenient way is to model
the coupling structure using component mode synthesis (CMS) method, which gives better approximation
than Guyan reduction (exact for stiffness matrices but approximate for mass) when dealing with higher
frequency problems.

For the sake of simplicity, the fixed-boundary CMS method is used here [33]. In the fixed-boundary CMS
method, a substructure is considered to be composed of interior and interface dofs. It condenses the system
matrices by assuming the displacements of the interior dofs as a linear superposition of the constraint modes
and the internal normal modes. Introduce the transformation matrix [T], the displacement vector of coupling
substructure is represented in terms of generalized coordinates:

ðqc
l Þ
T
ðqc

i Þ
T
ðqc

rÞ
T

n oT

¼ ½T� ðq
c
l Þ
T
ðqc

dÞ
T
ðqc

rÞ
T

n oT

, (25)
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where the qc
d is the modal displacement. The transformation matrix for the fixed-boundary method has the form

½T� ¼

I 0 0

�½Kc
ii�
�1½Kc

il � Uii �½K
c
ii�
�1½Kc

ir�

0 0 I

2
64

3
75, (26)

where Uii is the fixed interface normalized modal matrix, Kc
ii, Kc

il and Kc
ir are the interior dofs related

components in the stiffness matrix. Thus Eq. (20) can be simplified as

½Mc
CB� ð€q

c
l Þ
T
ð€qc

dÞ
T
ð€qc

rÞ
T

n oT

þ ½Kc
CB� ðq

c
l Þ
T
ðqc

dÞ
T
ðqc

rÞ
T

n oT

¼ ðFc
l Þ
T 0 ðFc

rÞ
T

n oT

, (27)

where the condensed mass matrix ½Mc
CB� ¼ ½T�

T½Mc�½T�, stiffness matrix ½Kc
CB� ¼ ½T�

T½Kc�½T�, qd is the truncated
set of generalized modal displacement associated to the modal matrix Uii.

Consequently, Eq. (24) can be modified as

Ŝ
c

ll ½q
�� � ½F�� Ŝ

c

lr½q
þ�

Ŝ
c

rl ½q
�� Ŝ

c

rr½q
þ� þ ½Fþ�

" #
Aref

Atra

( )
¼
½Fþ� � Ŝ

c

ll ½q
þ�

�Ŝ
c

rl ½q
þ�

" #
fAinc
g, (28)

where Ŝ
c

ll, Ŝ
c

lr, Ŝ
c

rl, Ŝ
c

rr are the reduced system matrices obtained by eliminating the modal displacement qd. After
solving Eq. (28), the whole scattered wave fields can be obtained through Eqs. (25)–(27) for near field and the
wave representation (Eqs. (16) and (18)) for far field. It should be noted that the eigensolution of the coupling
substructure model can be used for different wave inputs, which is particularly applicable to the systems
comprising certain standard local features. Another advantage over the direct condensation is that the number
of the normal modes of coupling substructures can also be frequency dependent, not only that of the truncated
bases, which further improves the numerical efficiency if the solution in the wide frequency range is desired.

3. Finite element analysis of non-axisymmetric waves

There are another set of modes which can propagate in the cylindrical pipes. These modes have integer
circumferential wavenumbers. As been investigated in the previous section, the properties of the axisymmetric
modes and their interaction with axisymmetric defects can be conveniently investigated since there is no
variation of displacements and stresses field around the circumference. However, practical defects are mostly
irregular and non-axisymmetric. When the incident axisymmetric waves impinge on those irregular defects, the
modes will lose some energy being converted to the non-axisymmetric modes, causing the complex 3-D
scattering problems. In addition, it is not easy to have purely axisymmetric modes generated even by the aid of
some advanced excitation schemes [13].

The application of WFE method for the 1-D wave propagation analysis of non-axisymmetric waves is not
as effortless as that for the plate waves or axisymmetric cylindrical waves, because it generally requires more
computation resources owing to the introduce of the circumferential waves numbers, especially when the
diameter is relatively large. It is necessary to treat the harmonic variation of the mode structures theoretically
in both the circumferential and axial directions, i.e. using la ¼ e�ikd to denote the axial wave propagating
constant, while lc ¼ e�inDy ðn 2 ZÞ the circumferential propagating constant. This treatment is similar to that
for the 2-D periodic systems considered by Ahmed in Ref. [29], where the high order elements were used. In
this study, the cell is assumed to be discretized by the linear shell or brick elements without interior dofs for the
case of clarity (see Fig. 3). Let the circumferential wavenumber n be non-negative integer, i.e. we firstly
consider the axisymmetric modes and positive circumferential wave. The dynamic equation for the typical 3-D
cell of the pipe is

½Dij �fql1 ql2 qr1 qr2g
T ¼ fFl1 Fl2 Fr1 Fr2g

T, (29)

where [Dij] (i,j ¼ 1, 2, 3, 4) is the structured dynamic stiffness matrix of the typical cell in cylindrical coordinate
system. Considering the periodicity conditions for the mode structures, the relationship of the displacement

ql2 ¼ lcql1; qr1 ¼ laql1; qr2 ¼ lalcql1, (30)
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and the force equilibrium condition

Fr2 ¼ �ðlalcFl1 þ laFl2 þ lcFr1Þ (31)

holds, as is schematically indicated in Fig. 3. Then Eq. (29) can be reduced to form the eigenfunction

ðl2aS1 þ laS2 þ S3Þql1 ¼ 0, (32)

where S1 ¼ l2cD14 þ lcðD13 þD24Þ þD23, S2 ¼ l2cðD12 þD34Þ þ lcðD11 þD22 þD33 þD44Þ þD21 þD43, S3 ¼

l2cD32 þ lcðD31 þD42Þ þD41.
It can be proved that the eigenvalues of above eigenfunction Eq. (32) come in pairs (la, 1/la), because lc is

direction independent due to the symmetry (it can be set to be einDy), if la is regarded as eigenvalue, and vice
versa. Strict proof need the properties of the block matrices to be considered.

Similar to the eigenfunction in the axisymmetric cases, Eq. (32) can be linearized as

S1 � S3 �S2

S2 S1 � S3

" #
ql1

laql1

( )
¼ m

0 S1

�S3 0

" #
ql1

laql1

( )
, (33)

where m ¼ la+1/la, or simply as

0 I

�S3 �S2

" #
ql1

laql1

( )
¼ la

I 0

0 S1

" #
ql1

laql1

( )
, (34)

if a smaller model is of interest.
The wavenumbers and mode structures for both propagating and evanescent waves are available by solving

Eq. (33) or Eq. (34) for a given circumferential wavenumber in frequency domain. Although they concern the
quadratic eigenvalue problems, the computational cost is nearly negligible, as only the radial dimension of the
pipe need to be discretized. Similar to Eq. (5), Eq. (32) can also be constructed as the eigenfunction with
smaller system matrices for the circular frequency if only the dispersion curves are desired.

In order to connect with the FE formulation of the coupling structures, the displacement and force vectors
should be extracted from the eigensolution. Let (ql, Fl), (qr, Fr) denote the left and right vectors respectively.
By reusing the periodicity conditions, the left displacement vector can be written as

ql ¼ qTl1; lcq
T
l1; . . . ; l

m�1
c qTl1; . . . ; l

M�1
c qTl1

� �T
, (35)

where M ¼ 2p/Dy, m ¼ 1,2,y, M. Analogously, the right displacement vector is

qr ¼ qTr1; lcq
T
r1; . . . ; l

m�1
c qTr1; . . . ; l

M�1
c qTr1

� �T
, (36)
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or written as qr ¼ laql due to the relationship given by Eq. (30). The left force vector can be formed as

Fl ¼ FT
l1 þ lM�1

c FT
l2; . . . ; l

m�1
c FT

l1 þ lm�2
c FT

l2; . . . ; l
M�1
c FT

l1 þ lM�2
c FT

l2

� �T
. (37)

And the right vector is

Fr ¼ FT
r1 þ lM�1

c FT
r2; . . . ; l

m�1
c FT

r1 þ lm�2
c FT

r2; . . . ; l
M�1
c FT

r1 þ lM�2
c FT

r2

� �T
, (38)

or written as Fr ¼ �laFl since the relationship given by Eq. (31) holds.
As n is supposed to be non-negative, solution of Eq. (32) leads to waves which are circumferentially

propagating (or non-propagating), rather than the modes like those obtained in the axisymmetric cases.
Another solution is also necessary by setting the circumferential constant ly�c ¼ �e

inDy. The bases for non-
axisymmetric waves are then duplicated. The non-axisymmetric modes in pipes with infinite length can be
described as the linear combination of the positive circumferential (y+) waves and negative circumferential
(y�) waves from two solutions:

q ¼ ðaqyþl1 e�iny þ bqy�l1 einyÞe�ikz; F ¼ ðaFyþ
l1 e�iny þ bFy�

l1 einyÞe�ikz. (39)

Thus all the circumferentially standing or propagating modes can be predicted. The scattering formulation
can be constructed by resorting to Eq. (24) or its dynamic reduction form (Eq. (28)), which can be utilized to
deal with wave scattering at any type of local inhomogeneities.

4. Numerical results and discussion

4.1. Axisymmetric waves and the interaction with axisymmetric inhomogeneities

4.1.1. Convergence analysis and dispersion calculation

A convergence analysis considering different grid densities through the thickness is performed in order to
determine the proper modelling size within the frequency range of interest. Without loss of generality, the
pipes are assumed to be isotropic and single layered, so it is easier to validate the numerical procedures by the
analytical solution for cylindrical Lamb or torsional waves.

In order to compare to the numerical and experimental studies in Ref. [3], a steel pipe is considered, with the
material properties and geometry being set as: density r ¼ 7850 kg/m3, Young’s modulus E ¼ 2.169� 1011 Pa,
Poisson’s ratio n ¼ 0.287, internal diameter fID ¼ 76mm, wall thickness h ¼ 5.5mm. The linear quadrilateral
axisymmetric element with eight dofs is used to study the axisymmetric waves. The dispersion curves
calculated with different grid densities is shown in Fig. 4(a). It suggests that the though-thickness
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Fig. 4. Convergence analysis and validation of dispersion relationship. (a) dispersion curves of axisymmetric Lamb modes for 76mm (ID)

steel pipe with different grid densities: (——) 45 nodes, (– –) 23 nodes, ( � � � ) 12 nodes; (b) phase velocity dispersion of axisymmetric

modes for 76mm (ID) steel pipe: (——) L(0,m) modes by FE with 23 nodes, (– –) T(0,m) modes by FE with 23 nodes, (� � ) analytical.
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discretization by 22 linear elements will provide sufficient accuracy for the modes with the thickness frequency
production below 8MHzmm. At 8MHzmm, the error of the wavenumbers for the propagating modes are
smaller than 0.8%. Introduce the grid criterion proposed in Ref. [16] for the plate modes calculation using
SAFE method,

Nc ¼
lT

L
4b, (40)

where Nc is the number of elements per through-thickness ‘‘wavelength’’, L is the element size, lT ¼ 2pcT/o is
the transverse ‘‘wavelength’’, b ¼ 10 is suggested for linear elements and b ¼ 4 for quadratic elements. At
8MHzmm Nc equals to 9. If employ the quadratic elements with the same number of nodes, it is faster to
approach the convergence due to the quadratic interpolation, which is also indicated in that paper. This means
the criterion is also applicable to some extent in this case. As to the torsional modes, the linear quadrilateral
elements with each having four dofs are used. Fig. 4(b) gives a comparison of the analytical and FE results for
the phase velocity dispersion. The analytical method is implemented by the root searching procedure for a
given frequency [13]. Agreements are found before the higher order modes appear. The group velocity
dispersion curves below 6MHzmm are shown in Fig. 5(a). If the high dissipation is considered and introduced
as the structural damping with loss factor Z ¼ 0.05, the energy velocity prediction calculated using Eq. (15) is
given in Fig. 5(b), where group velocity curves are provided for comparison. It can be seen that they fit well
only in the region where the attenuation is low. Significant divergence is observed in high attenuation region,
especially near the cut-off frequency for undamped case in Fig. 5(a).

4.1.2. Interaction with surface breaking defects

For the scattering problems of L(0, m) modes, the mesh density is kept unchanged, while the upper
frequency is reduced to 6MHzmm, where Nc ¼ 12. This consideration is driven by the better prediction for a
set of non-propagating modes, which are to be included into the truncated bases. For instance, at 4.4MHzmm
the bases comprise five propagating modes (L(0,1)–L(0,5)) and five non-propagating modes (L(0,5)–L(0,10)),
whose mode structures are partially shown in Fig. 6. At least six elements per transverse wavelength are
ensured for those non-propagating modes.

Schematically shown in Fig. 7, half elliptical notches with l ¼ h/5 and the through-thickness extension hd/h

varying from 5% to 95% are considered to model the flawed pipe. Fig. 8 shows the reflection and transmission
coefficient of different notch depths, which are calculated by the dynamic reduced scattering equation with
sufficient fixed modes considered to approach the convergence. Fig. 9 shows a comparison of results calculated
with different number of fixed modes included in the dynamic reduced scattering equation. It indicates that
agreements of two methods will be achieved within the frequency band of [0, fmax] by taking account of the
fixed modes below 1.2fmax.
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Fig. 5. Group and energy velocity. (a) group velocity dispersion of axisymmetric modes: (——) L(0, 1)–L(0, 6), (– –) T(0, 1)–T(0, 4);

(b) comparison of group velocity Vg ( � � � ) and energy velocity Ve (——) (Z ¼ 0.05).
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In order to validate the results obtained, a time domain analysis is performed through the standard FE
calculation (implicit, explicit or Fourier transform based) of a bounded pipe model. The reflection and
transmission coefficient can be calculated by dividing the Fourier spectrum of the reflected and transmitted
signal by that of the incident signal. A 2.6m long steel pipe with a notch 1.69m away from the initial end is
considered. To minimize the effect of defect induced dispersion, narrow band signals are used, typically
composed of 5.5 cycles modulated by a Hanning window with the central frequency equal to 70 kHz. The axial
displacements are monitored between the excitation end and the notch for the incident and reflected signal, as
is shown in Fig. 10. Because those wave packets are apparently unconnected in this case, no wave packet
decomposition techniques are needed. The frequency-dependent coefficients can be obtained by

jRðoÞj ¼
jFðuRðtÞÞj

jFðuI ðtÞÞj
e�kI ðoÞL1 ; jTðoÞj ¼

jFðuT ðtÞÞj

jFðuI ðtÞÞj
e�kI ðoÞL2 , (41)

where uR(t) and uI(t) denote the reflection and incident wave packet signal, respectively; L1 and L2 represent
the distance between the notch and two corresponding monitoring spots. Fig. 11(a) shows the reflection
coefficient evolution of different notch depths in frequency domain. It can be seen that the deviation of two
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results are restricted within 5% in amplitude, so do those results at 70 kHz in Fig. 11(b), where the
experimental data given in Ref. [5] is superposed for comparison, which suggests the similar tendency within
acceptable discrepancies. The time domain analysis generally underestimate the reflection coefficient. This is
probably because the grid in the analysis was limited by computational resource, consequently not refined
enough, which made the flawed part ‘‘stiffer’’ than that used in scattering equation.

The scattering of T(0, 1) modes are also analysed using 50 linear quadrilateral elements. Sharp notches with
l ¼ h/10 are firstly considered. Fig. 12 shows the reflection and transmission coefficient evolution with various
notch depths in a wider frequency band, where the convergence of both the eigenmodes and the scattered
mode distributions at upper frequency corresponding to different grid densities is checked. With the change of
the notch depth, monotonic variations in the amplitude of reflection and transmission coefficient are observed.
Those coefficients do not change much at the higher frequencies. In the case of the notch width increasing, the



ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

t (ms)

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t incident

reflection from notch

reflection from end

Fig. 10. Time response from FE calculation.

50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Frequency (kHz)

R
ef

le
ct

io
n 

co
ef

fi
ci

en
t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

hd/h

R
ef

le
ct

io
n 

an
d 

tr
an

sm
is

si
on

 c
oe

ff
ic

ie
nt

Fig. 11. Comparison with time domain analysis and experiment results in Ref. [5]. (a) reflection coefficient (L(0, 2) at 50–90 kHz) variation

with the notch depth: (——) WFE prediction, (– –) time-domain results; (b) reflection and transmission coefficient (L(0, 2) at 70 kHz)

variation with the notch depth: (——) WFE prediction, (J J) time-domain results, (’ ’) experiment results [5].

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Fh (MHz−mm)

R
ef

le
ct

io
n 

C
oe

ff
ic

ie
nt

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Fh (MHz−mm)

T
ra

ns
m

is
si

on
 C

oe
ff

ic
ie

nt

Fig. 12. Reflection (jRT(0,1)j) and transmission (jTT(0,1)j) coefficient variation with the notch depth: (—) 10%, (– � ) 30%, (++) 50%, (?)

70%, and (– –) 90%. (a) |RT(0,1)|, (b) |TT(0,1)|.

W.J. Zhou et al. / Journal of Sound and Vibration 319 (2009) 335–354348



ARTICLE IN PRESS

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Fh (MHz−mm)

R
ef

le
ct

io
n 

an
d 

T
ra

ns
m

is
si

on
 C

oe
ff

ic
ie

nt

Fig. 13. Reflection (jRT(0,1)j) and transmission coefficient (jTT(0,1)j) variation with the notch length/depth ratio (hd/h ¼ 0.3): (—) l/

hd ¼ 0.5, (?) l/hd ¼ 1, (– –) l/hd ¼ 2, and (– � ) l/hd ¼ 4.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Fh (MHz−mm)

Po
w

er
 f

lo
w

 o
f 

sc
at

te
re

d 
m

od
es

Fig. 14. Power flow of scattered modes (notch depth 50% of the thickness): (—) reflection of L(0, 2), (– –) transmission L(0, 2), (?) other

scattered modes, and (– � ) summation of all the scattered modes.

W.J. Zhou et al. / Journal of Sound and Vibration 319 (2009) 335–354 349
coefficients tend to evolve severely with the frequency (see Fig. 13). This is because the local ‘‘resonances’’
further complicate the energy distribution among multiple modes, as the notch width turn to be comparable to
the wavelength. Similar results are found in Ref. [17], where the reflection and transmission coefficients of the
SH0 wave scattering in the flawed plates are given.

To further verify the numerical procedures, the energy conservation in terms of incident and scattered
power flow equivalence is examined. The summation of power flows of all the scattered modes, which are
normalized to that of the incident mode, should be unity over the entire frequency band, provided that no
dissipation mechanisms are introduced. For the two cases shown in Figs. 14 and 15, the power flow
summations vary within the interval 1710�5 and 1710�6, respectively, which suggests that sufficient accuracy
is achieved.
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4.2. Wave scattering at non-axisymmetric inhomogeneities

A 3-D cell consisted of four linear brick elements is used to extract the dispersion relationship below
100 kHz, as is given in Fig. 16. Here the dynamic stiffness matrices relating to Cartesian coordinate system
from the standard FE packages are transformed to those relating to cylindrical coordinates (ur,uy,uz). For the
linear brick elements, the dynamic stiffness matrix D relative to the dofs of a single node and its corresponding
node at 2y are transformed to D0 ¼ TT

c DTc, where Tc ¼ diag{P, 1, �PT, 1} with P ¼ (sin y, �cos y; cos y,
sin y). The analytical results of phase velocity are also provided in Fig. 16, which are in agreement with those
from WFE method, since more than 10 elements per wavelength in WFE calculation is sufficient to ensure the
accuracy.

Through-thickness notches with axial extension equal to 2.5mm and the circumferential extension varying
from 10% to 90% are considered to examine the interaction of L(0, 2) mode with non-axisymmetric
inhomogeneities. The coupling structures are discretized into approximately 4000 brick elements with the
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cross-section having 384 elements to well characterize the notch features. As a wide frequency band is
considered, the number of the modes that are included to the bases for the scattering problem is set to be
frequency dependent. For an instance, 39 bases for the propagating modes (three symmetric and 18 non-
symmetric modes) and a doubled number of bases for the non-propagating modes are chosen to form the
truncated bases for positive-going modes at the frequency of 80 kHz. Figs. 17 and 18 show the reflection and
transmission coefficient of L(0, 2) mode, respectively, where monotonic changes of the coefficients are
observed. These coefficients are not highly sensitive to the frequency within a wide band, except near to the
cut-off frequency of F(n, 3) modes, which is due to the close mode structures as the incident L(0, 2) mode.

Fig. 19 gives the coefficients of scattered modes with the notch circumferential extension equal to 50% of
the pipe circle. The mode conversions are extremely complex because a severe notch is considered, thus the
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coefficients of only a few scattered modes are shown, besides the mostly converted F(1, 3) mode. In fact, most
of the scattered modes are predicted, except the T(0,1) mode and some over included evanescent modes. This
suggests that a sufficient number of modes should be considered when dealing with general non-axisymmetric
inhomogeneities. However, in the case that the local inhomogeneities do not seriously destroy the
axisymmetry, such as surface corrosion in steel pipe, the modes with large circumferential wavenumbers
can be discarded, though they may be even propagating. This treatment will save the computational time while
achieve acceptable numerical accuracy.

Fig. 20 gives the reflection coefficient of L(0, 2) and converted mode F(1, 3) at 70 kHz with various
circumferential notch extensions. Experiment results from Ref. [3] are superposed for comparison. Both
results exhibit the similar tendency of the reflection coefficient varieties. The coefficient of F(1, 3) from
numerical calculation is larger than that provided in Ref. [3]. This is probably caused by the fact that more
severe notches are considered in the numerical studies than the experiments.
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5. Conclusion

This paper investigates the elastic wave scattering at local inhomogeneities in pipes by utilizing a hybrid
WFE/FE formulation. Numerical studies are given for both the axisymmetric and non-axisymmetric
problems, which are partially validated by time domain analysis and the published experiment results.
Numerical results show that the proposed formulation provides a convenient and effective way to calculate the
wave modes and the scattered field. One of the advantages of the WFE method is that the waveguide model
can be discretized by the aid of existing FE packages including powerful grid generation procedures to cope
with wave propagation or dynamic problems of complex waveguide structures. It can be conveniently
combined with FE method to analyse the wave scattering at local defects or structural features. Comparing to
other methods such as SAFE method, the application of this method can be totally examined based on some
existing FE packages, including the typical cell modelling, eigenfunction solution and substructure analysis.

The scattering of the lower frequency wave at non-axisymmetric pipe discontinuities is considered based on
a 2-D formulation. If the frequency goes higher hence the wavelength is much smaller than the discontinuities,
the circular scattered waves might appear. To correctly describe the scattered field, more eigenmodes need to
be included to the mode expansion bases. The scattering field calculation for such 3-D scattering problems will
be difficult even when the dynamic reduction technique being used.
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